Exercise 26

Show that every point on the line $\mathbf{v}=(1,-1,2)+t(2,3,1)$ satisfies the equation $5 x-3 y-z-6=0$.

Solution

The parameterization for the line can be written as

$$
\begin{aligned}
\mathbf{v} & =(1,-1,2)+t(2,3,1) \\
& =(1,-1,2)+(2 t, 3 t, t) \\
& =(1+2 t,-1+3 t, 2+t) .
\end{aligned}
$$

The x-, y-, and z-components of the line are

$$
x=1+2 t \quad \text { and } \quad y=-1+3 t \quad \text { and } \quad z=2+t
$$

respectively. Substitute these into the equation for the plane.

$$
\begin{aligned}
5 x-3 y-z-6 & =5(1+2 t)-3(-1+3 t)-(2+t)-6 \\
& =5+10 t+3-9 t-2-t-6 \\
& =0
\end{aligned}
$$

Since the right side is 0 for all values of t, every point (x, y, z) on the line lies in the plane.

